limit trigonometri

Limit Trigonometri



Rumus Turunan Fungsi Trigonometri

Berikut ini adalah beberapa turunan dasar trigonometri yang wajib diketahui sebelum anda memecahkan persoalan turunan trigonometri:
  • f(x) = sin x → f ‘(x) = cos x
  • f(x) = cos x → f ‘(x) = −sin x
  • f(x) = tan x → f ‘(x) = sec2 x
  • f(x) = cot x → f ‘(x) = −csc2x
  • f(x) = sec x → f ‘(x) = sec x . tan x
  • f(x) = csc x → f ‘(x) = −csc x . cot x.
Perluasan Rumus Turunan Fungsi Trigonometri I
Misalkan u merupakan fungsi yang dapat diturunkan terhadap x, dimana u’ adalah turunan u terhadap x, maka :
  • f(x) = sin u → f ‘(x) = cos u . u’
  • f(x) = cos u → f ‘(x) = −sin u . u’
  • f(x) = tan u → f ‘(x) = sec2u . u’
  • f(x) = cot u → f ‘(x) = −csc2 u . u’
  • f(x) = sec u → f ‘(x) = sec u tan u . u’
  • f(x) = csc u → f ‘(x) = −csc u cot u . u’.
Perluasan Rumus Turunan Fungsi Trigonometri II
Berikut ini adalah turunan dari fungsi-fungsi rumus sin cos tan trigonometri dalam variabel sudut ax +b, dimana a dan b adalah bilangan real dengan a≠0 :
  • f(x) = sin (ax + b) → f ‘(x) = a cos (ax + b)
  • f(x) = cos (ax + b) → f ‘(x) = -a sin (ax + b)
  • f(x) = tan (ax + b) → f ‘(x) = a sec2 (ax +b)
  • f(x) = cot (ax + b) → f ‘(x) = -a csc2 (ax+b)
  • f(x) = sec (ax + b) → f ‘(x) = a tan (ax + b) . sec (ax + b)
  • f(x) = csc (ax + b) → f ‘(x) = -a cot (ax + b) . csc (ax + b).
Nah, agar kita lebih mudah menghafal sifat trigonometri diatas, mari kita kerjakan beberapa contoh soal sin cos tan dan turunan trigonometri berikut ini.

Contoh Soal Turunan Trigonometri

1.) Turunan pertama dari f(x) = 7 cos (5 – 3x) adalah f ‘ (x) =  …..
  • 35 sin (5 – 3x)
  • – 15 sin (5 – 3x)
  • 21 sin (5 – 3x)
  • – 21 sin (5 – 3x)
  • – 35 sin (5 – 3x).
Jawab :
* ingat f(x) = {\color{Red} a.cos\:(bx+c)}\;\;\;\;maka \;\;\;\;f'(x)= {\color{Red} -ab.sin\:(bx+c)}
* maka:
\begin{align*}f(x) & = & 7 cos (5 - 3x)\\f'(x) & = & -7.(-3).sin(5-3x)\\ & = & 21\;sin(5-3x) \end{align*}
2.) Jika ‘(x) adalah turunan dari f(x) dan jika f(x) = ( 3x – 2 ) sin (2x + 1) maka f ‘ (x) adalah …
  • 3 cos ( 2+ 1 )
  • 6 cos ( 2+ 1 )
  • 3 sin ( 2 + 1 ) + (6 – 4) cos (2 + 1)
  • (6– 4) sin ( 2+ 1 ) + 3 cos ( 2+ 1 )
  • E. 3 sin ( 2+ 1) + ( 3– 2 ) cos( 2+ 1 ).
Jawab :
*  f (x) = {\color{Red} (3x-2)}\;{\color{DarkGreen} sin( 2x + 1 )} kita misalkan terlebih dulu
\begin{array}{lcl}{\color{Red} u}={\color{Red} 3x-2} & maka & u'=3 \\v={\color{DarkGreen} sin(2x+1)} & maka & v'=2\;cos(2x+1) \end{array}
* ingat rumus turunan perkalian dua fungsi :
\begin{array}{rcl}f'(x) & = & u'.v+v'.u\\ & = & 3.{\color{DarkGreen} sin(2x+1)}+2cos(2x+1).({\color{Red} 3x-2})\\ & = & 3\;sin(2x+1)+(6x-4)\;cos(2x+1) \end{array}
3.) Turunan pertama fungsi (x) = 5 sin cos adalah f ‘ (x) = …
  • 5 sin 2
  • 5 cos 2x
  • 5 sincos 
  • 5 sin cos2
  • 5 sin 2cos x
Jawab :
f (x) = {\color{Red} 5\;sin\;x}\;{\color{DarkGreen} cos\;x} kita misalkan terlebih dulu
\begin{array}{lcl}{\color{Red} u}={\color{Red} 5sin\;x} & maka & u'=5cos\;x\\v={\color{DarkGreen} cos\;x} & maka & v'=-sin\;x \end{array}
* ingat rumus turunan
\begin{array}{rcl}f'(x) & = & u'.v+v'.u\\ & = & 5cos\;x.{\color{DarkGreen} cos\;x}+(-sin\;x).({\color{Red} 5sin\;x})\\ & = & 5\;cos^2x-5\;sin^2x\\ & = & 5(cos^2x-sin^2x)\\ & = & 5.cos\;2x \end{array}
Namun perlu di ingat cara yang satu ini lebih simple, kita bisa pakai, berikut caranya:
* ingat  bahwa  sin\;2x=2\;sin\;x.cos\;x
* sehingga :
\begin{align*}f(x) & = & 5\;sin\;x\;cos\;x\\ & = & \frac{5}{2}.{\color{DarkBlue} 2.sin\;x.cos\;x}\\ & = & \frac 52.sin\;2x \end{align*}
* maka :
\begin{align*}f'(x) & = & \frac 52.2.cos\;2x\\ & = & 5\;cos\;2x\end{align*}


Sumber : http://www.menghitung.com/rumus-turunan-trigonometri/#

Komentar

Posting Komentar